
Text2LIVE: Text-Driven Layered Image and Video Editing

Omer Bar-Tal1∗, Dolev Ofri-Amar1∗, Rafail Fridman1∗,
Yoni Kasten2, and Tali Dekel1

1 Weizmann Institute of Science 2 NVIDIA Research

(b) Image editing results (c) Video editing results

“spinach moss cake”“ice”

“brioche” “oreo cake”

Input image

“gira�e with a neck warmer”

“colorful stained glass gira�e”

Input video

“smoke”

“smoking cigar”

Input image

Text2LIVE

(a) Our text to layer approach

Fig. 1. Text2LIVE performs semantic, localized edits to real-world images (b), or videos
(c). Our key idea is to generate an edit layer–RGBA image representing the target edit
when composited over the original input (a). This allows us to use text to guide not
only the final composite, but also the edit layer itself (target text prompts are shown
above each image). Our edit layers are synthesized by training a generator on a single
input, without relying on user-provided masks or a pre-trained generator.

Abstract. We present a method for zero-shot, text-driven appearance
manipulation in natural images and videos. Given an input image or
video and a target text prompt, our goal is to edit the appearance of
existing objects (e.g., object’s texture) or augment the scene with visual
effects (e.g., smoke, fire) in a semantically meaningful manner. We train a
generator using an internal dataset of training examples, extracted from
a single input (image or video and target text prompt), while leveraging
an external pre-trained CLIP model to establish our losses. Rather than
directly generating the edited output, our key idea is to generate an edit
layer (color+opacity) that is composited over the original input. This
allows us to constrain the generation process and maintain high fidelity
to the original input via novel text-driven losses that are applied directly
to the edit layer. Our method neither relies on a pre-trained generator nor
requires user-provided edit masks. We demonstrate localized, semantic
edits on high-resolution natural images and videos across a variety of
objects and scenes. Project page: https://text2live.github.io/

Keywords: text-guided image and video editing, appearance editing, CLIP

* Denotes equal contribution.

https://text2live.github.io/

2 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

(a) Image text-guided layered editing (b) Video text-guided layered editing

“fire out of bear’s mouth”

“fire” “latte art heart pattern” “monarch butterfly” “orca” “snow”

“latte art heart pattern” “monarch butterfly” “orca” “snowy countryside scene”

In
pu

t
O

ut
pu

t e
di

t l
ay

er
F

in
al

 c
om

po
si

te

Fig. 2. Text2LIVE generates an edit layer (middle row), which is composited over the
original input (bottom row). The text prompts expressing the target layer and the
final composite are shown above each image. Our layered editing facilities a variety
of effects including changing objects’ texture or augmenting the scene with complex
semi-transparent effects.

1 Introduction

Computational methods for manipulating the appearance and style of objects in
natural images and videos have seen tremendous progress, facilitating a variety
of editing effects to be achieved by novice users. Nevertheless, research in this
area has been mostly focused in the Style-Transfer setting where the target
appearance is given by a reference image (or domain of images), and the original
image is edited in a global manner [16]. Controlling the localization of the edits
typically involves additional input guidance such as segmentation masks. Thus,
appearance transfer has been mostly restricted to global artistic stylization or to
specific image domains or styles (e.g., faces, day-to-night, summer-to-winter). In
this work, we seek to eliminate these requirements and enable more flexible and
creative semantic appearance manipulation of real-world images and videos.

Inspired by the unprecedented power of recent Vision-Language models, we
use simple text prompts to express the target edit. This allows the user to easily
and intuitively specify the target appearance and the object/region to be edited.
Specifically, our method enables local, semantic editing that satisfies a given
target text prompt (e.g., Fig. 1 and Fig. 2). For example, given the cake image
in Fig. 1(b), and the target text: “oreo cake”, our method automatically locates
the cake region and synthesizes realistic, high-quality texture that combines
naturally with the original image – the cream filling and the cookie crumbs
“paint” the full cake and the sliced piece in a semantically-aware manner. As
seen, these properties hold across a variety of different edits.

Our framework leverages the representation learned by a Contrastive Language-
Image Pretraining (CLIP) model, which has been pre-trained on 400 million
text-image examples [35]. The richness of the enormous visual and textual space
spanned by CLIP has been demonstrated by various recent image editing meth-
ods (e.g., [2,3,11,12,33]). However, the task of editing existing objects in arbi-

Text2LIVE 3

trary, real-world images remains challenging. Most existing methods combine a
pre-trained generator (e.g., a GAN or a Diffusion model) in conjunction with
CLIP. With GANs, the domain of images is restricted and requires to invert
the input image to the GAN’s latent space —a challenging task by itself [49].
Diffusion models [13,45] overcome these barriers but face an inherent trade-off
between satisfying the target edit and maintaining high-fidelity to the original
content [2]. Furthermore, it is not straightforward to extend these methods to
videos. In this work, we take a different route and propose to learn a generator
from a single input–image or video and text prompts.

If no external generative prior is used, how can we steer the generation to-
wards meaningful, high-quality edits? We achieve this via the following two key
components: (i) we propose a novel text-guided layered editing, i.e., rather than
directly generating the edited image, we represent the edit via an RGBA layer
(color and opacity) that is composited over the input. This allows us to guide
the content and localization of the generated edit via a novel objective function,
including text-driven losses applied directly to the edit layer. For example, as
seen in Fig. 2, we use text prompts to express not only the final edited image
but also a target effect (e.g., fire) represented by the edit layer. (ii) We train
our generator on an internal dataset of diverse image-text training examples by
applying various augmentations to the input image and text. We demonstrate
that our internal learning approach serves as a strong regularization, enabling
high quality generation of complex textures and semi-transparent effects.

We further take our framework to the realm of text-guided video editing. Real-
world videos often consist of complex object and camera motion, which provide
abundant information about the scene. Nevertheless, achieving consistent video
editing is difficult and cannot be accomplished näıvely. We thus propose to de-
compose the video into a set of 2D atlases using [18]. Each atlas can be treated
as a unified 2D image representing either a foreground object or the background
throughout the video. This representation significantly simplifies the task of
video editing: edits applied to a single 2D atlas are automatically mapped back
to the entire video in a consistent manner. We demonstrate how to extend our
framework to perform edits in the atlas space while harnessing the rich informa-
tion readily available in videos.

In summary, we present the following contributions:

– An end-to-end text-guided framework for performing localized, semantic ed-
its of existing objects in real-world images.

– A novel layered editing approach and objective function that automatically
guides the content and localization of the generated edit.

– We demonstrate the effectiveness of internal learning for training a generator
on a single input in a zero-shot manner.

– An extension to video which harnesses the richness of information across
time, and can perform consistent text-guided editing.

– We demonstrate various edits, ranging from changing objects’ texture to
generating complex semi-transparent effects, all achieved fully automatically
across a wide-range of objects and scenes.

4 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

2 Related Work

Text-guided image manipulation and synthesis. There has been remark-
able progress since the use of conditional GANs in both text-guided image
generation [38,50,51,52], and editing [9,22,29]. ManiGAN [22] proposed a text-
conditioned GAN for editing an object’s appearance while preserving the image
content. However, such multi-modal GAN-based methods are restricted to spe-
cific image domains and limited in the expressiveness of the text (e.g., trained
on COCO [24]). DALL-E [36] addresses this by learning a joint image-text dis-
tribution over a massive dataset. While achieving remarkable text-to-image gen-
eration, DALL-E is not designed for editing existing images. GLIDE [30] takes
this approach further, supporting both text-to-image generation and inpainting.

Instead of directly training a text-to-image generator, a recent surge of meth-
ods leverage a pre-trained generator, and use a pre-trained CLIP [35] to guide the
generation process by text [3,12,25,33]. StyleCLIP [33] and StyleGAN-NADA [12]
use a pre-trained StyleGAN2 [17] for image manipulation, by either controlling
the GAN’s latent code [33], or by fine-tuning the StyleGAN’s output domain [12].
However, editing a real input image using these methods requires first tackling
the GAN-inversion challenge [39,47]. Furthermore, these methods can edit im-
ages from a few specific domains, and edit images in a global fashion. In contrast,
we consider a different problem setting – localized edits that can be applied to
real-world images spanning a variety of object and scene categories.

A recent exploratory and artistic trend in the online AI community has
demonstrated impressive text-guided image generation. CLIP is used to guide
the generation process of a pre-trained generator, e.g., VQ-GAN [10], or diffu-
sion models [13,45]. [19] takes this approach a step forward by optimizing the
diffusion process itself. However, since the generation is globally controlled by
the diffusion process, this method is not designed to support localized edits that
are applied only to selected objects.

To enable region-based editing, user-provided masks are used to control the
diffusion process for image inpainting [2]. In contrast, our goal is not to generate
new objects but rather to manipulate the appearance of existing ones, while
preserving the original content. Furthermore, our method is fully automatic and
performs the edits directly from the text, without user edit masks.

Several works [11,14,21,28] take a test-time optimization approach and lever-
age CLIP without using a pre-trained generator. For example, CLIPDraw [11]
renders a drawing that matches a target text by directly optimizing a set of vector
strokes. To prevent adversarial solutions, various augmentations are applied to
the output image, all of which are required to align with the target text in CLIP
embedding space. CLIPStyler [21] takes a similar approach for global stylization.
Our goal is to perform localized edits, which are applied only to specific objects.
Furthermore, CLIPStyler optimizes a CNN that observes only the source image.
In contrast, our generator is trained on an internal dataset, extracted from the
input image and text. We draw inspiration from previous works that show the
effectiveness of internal learning in the context of generation [42,44,48].

Text2LIVE 5

Composite over greenscreen

Composite over input
=“fire over a green screen”

 Input image and text

“ship on fire”

Internal training dataset

“a photo of ship on fire”

“ship on fire!”
Generator

Input image Ouput edit layer (RGBA)

=“ship on fire”

Fig. 3. Image pipeline. Our method consists of a generator trained on a single input
image and target text prompts. Left: an internal image-text dataset of diverse training
examples is created by augmenting both image and text (see Sec. 3.1). Right: Our
generator takes as input an image and outputs an edit RGBA layer (color+opacity),
which is composited over the input to form the final edited image. The generator is
trained by minimizing several loss terms that are defined in CLIP space, and include:
Lcomp, applied to the composite, and Lscreen, applied to the edit layer (when composited
over a green background). We apply additional augmentations before CLIP (Sec. 3.1)

Other works use CLIP to synthesize [14] or edit [28] a single 3D represen-
tation (NeRF or mesh). The unified 3D representation is optimized through a
differentiable renderer: CLIP loss is applied across different 2D rendered view-
points. Inspired by this approach, we use a similar concept to edit videos. In our
case, the “renderer” is a layered neural atlas representation of the video [18].

Consistent Video Editing. Existing approaches for consistent video editing
can be roughly divided into: (i) propagation-based methods, which use keyframes
[15,46] or optical flow [41] to propagate edits through the video, and (ii) video
layering-based methods, in which a layered representation of the video is esti-
mated and then edited [18,23,26,27,37]. For example, Lu et al. [26,27] estimate
omnimattes – RGBA layers that contain a target subject along with their asso-
ciated scene effects. Omnimattes facilitate a variety of video effects (e.g., object
removal or retiming). However, since the layers are computed independently for
each frame, it cannot support consistent propagation of edits across time. Kasten
et al. [18] address this challenge by decomposing the video into unified 2D atlas
layers (foreground and background). Edits applied to the 2D atlases are auto-
matically mapped back to the video, thus achieving temporal consistency with
minimal effort. In our work, we treat a pre-trained neural layered atlas model as
a video renderer and leverage it for the task of text-guided video editing.

3 Text-Guided Layered Image and Video Editing

We focus on semantic, localized edits expressed by simple text prompts. Such
edits include changing objects’ texture or semantically augmenting the scene
with complex semi-transparent effects (e.g., smoke, fire). To this end, we har-
ness the potential of learning a generator from a single input image or video
while leveraging a pre-trained CLIP model, which is kept fixed and used to es-
tablish our losses [35]. Our task is ill-posed – numerous possible edits can satisfy
the target text according to CLIP, some of which include noisy or undesired
solutions [11,25]. Thus, controlling edits’ localization and preserving the original

6 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

content are both pivotal components for achieving high-quality editing results.
We tackle these challenges through the following key components:

1. Layered editing. Our generator outputs an RGBA layer that is composited
over the input image. This allows us to control the content and spatial extent
of the edit via dedicated losses applied directly to the edit layer.

2. Explicit content preservation and localization losses. We devise new losses
using the internal spatial features in CLIP space to preserve the original
content, and to guide the localization of the edits.

3. Internal generative prior. We construct an internal dataset of examples
by applying augmentations to the input image/video and text. These aug-
mented examples are used to train our generator, whose task is to perform
text-guided editing on a larger and more diverse set of examples.

3.1 Text to Image Edit Layer

As illustrated in Fig. 3, our framework consists of a generator Gθ that takes as
input a source image Is and synthesizes an edit layer, E = {C,α}, which consists
of a color image C and an opacity map α. The final edited image Io is given by
compositing the edit layer over Is:

Io = α · C + (1− α) · Is (1)

Our main goal is to generate E such that the final composite Io would comply
with a target text prompt T . In addition, generating an RGBA layer allows us
to use text to further guide the generated content and its localization. To this
end, we consider a couple of auxiliary text prompts: Tscreen which expresses the
target edit layer, when composited over a green background, and TROI which
specifies a region-of-interest in the source image, and is used to initialize the
localization of the edit. For example, in the Bear edit in Fig. 2, T =“fire out of
the bear’s mouth”, Tscreen =“fire over a green screen”, and TROI =“mouth”. We
next describe in detail how these are used in our objective function.

Objective function. Our novel objective function incorporates three main
loss terms, all defined in CLIP’s feature space: (i) Lcomp, which is the driving
loss and encourages Io to conform with T , (ii) Lscreen, which serves as a direct
supervision on the edit layer, and (iii) Lstructure, a structure preservation loss
w.r.t. Is. Additionally, a regularization term Lreg is used for controlling the
extent of the edit by encouraging sparse alpha matte α. Formally,

LText2LIVE = Lcomp + λgLscreen + λsLstructure + λrLreg, (2)

where λg, λs, and λr control the relative weights between the terms, and are
fixed throughout all our experiments (see Appendix A.3).

Composition loss. Lcomp reflects our primary objective of generating an image
that matches the target text prompt and is given by a combination of a cosine
distance loss and a directional loss [33]:

Lcomp = Lcos (Io, T) + Ldir(Is, Io, TROI, T), (3)

Text2LIVE 7

where Lcos = Dcos (Eim(Io), Etxt(T)) is the cosine distance between the CLIP
embeddings for Io and T . Here, Eim, Etxt denote CLIP’s image and text encoders,
respectively. The second term controls the direction of edit in CLIP space [12,33]
and is given by: Ldir = Dcos(Eim(Io)−Eim(Is), Etxt(T)− Etxt(TROI)) .

Similar to most CLIP-based editing methods, we first augment each image
to get several different views and calculate the CLIP losses w.r.t. each of them
separately, as in [2]. This holds for all our CLIP-based losses. See Appendix A.2
for details.

Screen loss. The term Lscreen serves as a direct text supervision on the gen-
erated edit layer E . We draw inspiration from chroma keying [4]–a well-known
technique by which a solid background (often green) is replaced by an image
in a post-process. Chroma keying is extensively used in image and video post-
production, and there is high prevalence of online images depicting various visual
elements over a green background. We thus composite the edit layer over a green
background Igreen and encourage it to match the text-template Tscreen :=“ { } over
a green screen”, (Fig. 3):

Lscreen = Lcos (Iscreen, Tscreen) (4)

where Iscreen = α · C + (1− α) · Igreen.
A nice property of this loss is that it allows intuitive supervision on a desired

effect. For example, when generating semi-transparent effects, e.g., Bear in Fig. 2,
we can use this loss to focus on the fire regardless of the image content by using
Tscreen =“fire over a green screen”. Unless specified otherwise, we plug in T to
our screen text template in all our experiments. Similar to the composition loss,
we first apply augmentations on the images before feeding to CLIP.

Structure loss. We want to allow substantial texture and appearance changes
while preserving the objects’ original spatial layout, shape, and perceived seman-
tics. While various perceptual content losses have been proposed in the context
of style transfer, most of them use features extracted from a pre-trained VGG
model. Instead, we define our loss in CLIP feature space. This allows us to im-
pose additional constraints to the resulting internal CLIP representation of Io.
Inspired by classical and recent works [20,43,48], we adopt the self-similarity
measure. Specifically, we feed an image into CLIP’s ViT encoder and extract its
K spatial tokens from the deepest layer. The self-similarity matrix, denoted by
S(I) ∈ RK×K , is used as structure representation. Each matrix element S(I)ij
is defined by:

S(I)ij = 1−Dcos

(
ti(I), tj(I)

)
(5)

where ti(I) ∈ R768 is the ith token of image I.
The term Lstructure is defined as the Frobenius norm distance between the

self-similarity matrices of Is, and Io:

Lstructure = ∥S(Is)− S(Io)∥F (6)

Sparsity regularization. To control the spatial extent of the edit, we encour-
age the output opacity map to be sparse. We follow [26,27] and define the sparsity

8 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

loss term as a combination of L1- and L0-approximation regularization terms:

Lreg = γ ∥α∥1 + Ψ0(α) (7)

where Ψ0(x) ≡ 2Sigmoid(5x) − 1 is a smooth L0 approximation that penalizes
non zero elements. We fix γ in all our experiments.

Bootstrapping. To achieve accurate localized effects without user-provided
edit mask, we apply a text-driven relevancy loss to initialize our opacity map.
Specifically, we use Chefer et al. [6] to automatically estimate a relevancy map1

R(Is) ∈ [0, 1]224×224 which roughly highlights the image regions that are most
relevant to a given text TROI. We use the relevancy map to initialize α by mini-
mizing:

Linit = MSE (R(Is), α) (8)

Note that the relevancy maps are noisy, and only provide a rough estimation
for the region of interest (Fig. 8(c)). Thus, we anneal this loss during training
(see implementation details in Appendix A.3). By training on diverse internal
examples along with the rest of our losses, our framework dramatically refines
this rough initialization, and produces accurate and clean opacity (Fig. 8(d)).

Training data. Our generator is trained from scratch for each input (Is, T)
using an internal dataset of diverse image-text training examples {(Iis, T i)}Ni=1

that are derived from the input (Fig. 3 left). Specifically, each training example
(Iis, T

i) is generated by randomly applying a set of augmentations to Is and to T .
The image augmentations include global crops, color jittering, and flip, while text
augmentations are randomly sampled from a predefined text template (e.g., “a
photo of”+T); see Appendix A.2 for details. The vast space of all combinations
between these augmentations provides us with a rich and diverse dataset for
training. The task is now to learn one mapping function Gθ for the entire dataset,
which poses a strong regularization on the task. Specifically, for each individual
example, Gθ has to generate a plausible edit layer E i from Iis such that the
composited image is well described by T i. We demonstrate the effectiveness of
our internal learning approach compared to the test-time optimization approach
in Sec. 4.

3.2 Text to Video Edit Layer

A natural question is whether our image framework can be applied to videos.
The key additional challenge is achieving a temporally consistent result. Näıvely
applying our image framework on each frame independently yields unsatisfactory
jittery results (see Sec. 4). To enforce temporal consistency, we utilize the Neural
Layered Atlases (NLA) method [18], as illustrated in Fig. 4(a). We next provide
a brief review of NLA and discuss in detail how our extension to videos.

Preliminary: Neural Layered Atlases. NLA provides a unified 2D param-
eterization of a video: the video is decomposed into a set of 2D atlases, each

1 [6] can only work with 224 × 224 images, so we resize both Is and α to 224 × 224
before applying the loss of (8)

Text2LIVE 9

. .
 .

Input Video (b) Generator(a) Neural Layered Atlases (pre-trained)

. .
 .

(e) Composited Frames

. .
 .

(d) Frame Edit Layer

(c) Atlas Edit Layer
(color+opacity)Foreground

Atlas

Background
Atlas

Billinear
Sampling

via

“rusty”

Fig. 4. Video pipeline. (a) a pre-trained and fixed layered neural atlas model [18] is
used as a “video renderer”, which consists of: a set of 2D atlases, mapping functions
from pixels to the atlases (and per-pixel fg/bg opacity values). (b) Our framework
trains a generator that takes a chosen (discretized) atlas IA as input and a target text
prompt (e.g., “rusty car”), and outputs (c) an atlas edit layer EA. (d) The edited atlas
is rendered back to frames using the pre-trained mapping network M, and then (e)
composited over the original video.

can be treated as a 2D image, representing either one foreground object or the
background throughout the entire video. An example of foreground and back-
ground atlases are shown in Fig. 4. For each video location p = (x, y, t), NLA
computes a corresponding 2D location (UV) in each atlas, and a foreground
opacity value. This allows to reconstruct the original video from the set atlases.
NLA comprises of several Multi-Layered Perceptrons (MLPs), representing the
atlases, the mappings from pixels to atlases and their opacity. More specifically,
each video location p is first fed into two mapping networks, Mb and Mf :

Mb(p) = (up
b , v

p
b), Mf (p) = (up

f , v
p
f) (9)

where (up
∗, v

p
∗) are the 2D coordinates in the background/foreground atlas space.

Each pixel is also fed to an MLP that predicts the opacity value of the foreground
in each position. The predicted UV coordinates are then fed into an atlas network
A, which outputs the RGB colors in each location. Thus, the original RGB
value of p can be reconstructed by mapping p to the atlases, extracting the
corresponding atlas colors, and blending them according to the predicted opacity.
We refer the reader to [18] for full details.

Importantly, NLA enables consistent video editing: the continuous atlas (fore-
ground or background) is first discretized to a fixed resolution image (e.g.,
1000×1000 px). The user can directly edit the discretized atlas using image
editing tools (e.g., Photoshop). The atlas edit is then mapped back to the video,
and blended with the original frames, using the predicted UV mappings and
foreground opacity. In this work, we are interested in generating atlas edits in a
fully automatic manner, solely guided by text. Text to Atlas Edit Layer. Our

video framework leverages NLA as a “video renderer”, as illustrated in Fig. 4.
Specifically, given a pre-trained and fixed NLA model for a video, our goal is
to generate a 2D atlas edit layer, either for the background or foreground, such
that when mapped back to the video, each of the rendered frames would comply
with the target text.

Similar to the image framework, we train a generator Gθ that takes a 2D
atlas as input and generates an atlas edit layer EA = {CA, αA}. Note that since

10 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

 (a) Input image (b) Editing results (RGBA edit layer composited over the input image)

“wooden” “golden” “stained glass” “crochet”

“brioche” “red velvet” “ice”“melted cheese”

“snow” “volcano” “ocean”“sahara”

Fig. 5. Text2LIVE image results. Across rows: different images, across columns: differ-
ent target edits. All results are produced fully automatically w/o any input masks.

Gθ is a CNN, we work with a discretized atlas, denoted as IA. The pre-trained
UV mapping, denoted by M, is used to bilinearly sample EA to map it to each
frame:

Et = Sampler(EA,S) (10)

where S = {M(p) | p = (·, ·, t)} is the set of UV coordinates that correspond
to frame t. The final edited video is obtained by blending Et with the original
frames, following the same process as done in [18].

Training. A straightforward approach for training Gθ is to treat IA as an image
and plug it into our image framework (Sec. 3.1). This approach will result in a
temporally consistent result, yet it has two main drawbacks: (i) the atlas often
non-uniformly distorts the original structures (see Fig. 4), which may lead to
low-quality edits , (ii) solely using the atlas, while ignoring the video frames,
disregards the abundant, diverse information available in the video such as dif-
ferent viewpoints, or non-rigid object deformations, which can serve as “natural
augmentations” to our generator. We overcome these drawbacks by mapping
the atlas edit back to the video and applying our losses on the resulting edited
frames. Similar to the image case, we use the same objective function (Eq. 2),
and construct an internal dataset directly from the atlas for training.

Text2LIVE 11

“foggy park”“swarovski blue crystal swan”

In
pu

t F
ra

m
es

E
di

te
d

F
ra

m
es

In
pu

t F
ra

m
es

E
di

te
d

F
ra

m
es

car-turn

B
ac

kg
ro

un
d

A
tla

s
E

di
te

d
A

tla
s

F
or

eg
ro

un
d

A
tla

s

E
di

te
d

A
tla

s
E

di
te

d
A

tla
s

E
di

te
d

A
tla

s

 “gira�e with a
hairy colorful mane”“dog with leopard texture”

Libby Lucia GiraffeBlack-swan

“cyberpunk neon car” + “countryside at nighttime”

Fig. 6. Text2LIVE video results. A representative frame from the original and edited
videos are shown for each example, along with the target text prompt. In car-turn, both
foreground and background atlases are edited sequentially (see Sec. 4). The original
and edited atlases are shown on the right. Full video results are included in the SM.

(a) Edit mask (overlay) (d) CLIPStyler(c) Blended-Diffusion (f) VQ-GAN + CLIP(b) GLIDE (e) Diffusion + CLIP

Fig. 7. Comparison to baselines. A couple of inputs are plugged into different image
manipulation methods: cake image, shown in Fig. 1, using “oreo cake”; and birds,
shown in Fig. 5, using “golden birds”. (a) manually created masks (shown in red over
the input) are provided to (b-c) the inpainting methods as additional inputs, while the
rest of the methods are mask-free. Our results are shown in Fig. 1, and Fig. 5.

More specifically, a training example is constructed by first extracting a crop
from IA. To ensure we sample informative atlas regions, we first randomly crop a
video segment in both space and time, and then map it to a corresponding atlas
crop IAc using M (see Appendix A.4 for full technical details). We then apply
additional augmentations to IAc and feed it into the generator, resulting in an
edit layer EAc = Gθ(IAc). We then map EAc and IAc back to the video, resulting
in frame edit layer Et, and a reconstructed foreground/background crop It. This
is done by bilinearly sampling EAc and IAc using Eq. (10), with S as the set
of UV coordinates corresponding to the frame crop. Finally, we apply LText2LIVE

from Eq. 2, where Is= It and E = Et.

12 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

 (a) Input image (c) Relevancy map (b) w/o bootstrapping (e) w/ bootstrapping (d) Our output matte

 (a) Input image (c) w/o structure (b) w/o sparsity (e) w/o screen (e) full objective (e) w/o internal dataset

Fig. 8. Top: We illustrate the effect of our relevancy-based bootstrapping for image (a)
using “red hat” as the target edit. (b) w/o bootstrapping our edited image suffers from
color bleeding. When initializing our alpha-matte to capture the hat (TROI =“hat”), an
accurate matting is achieved (d-e). Notably, the raw relevancy map provides very rough
supervision (c); during training, our method dramatically refines it (d). Bottom: We
ablate each of our loss terms and the effect of internal learning (“mango” to “golden
mango”). See Sec. 4.4.

4 Results

4.1 Qualitative evaluation

We tested our method across various real-world, high-resolution images and
videos. The image set contains 35 images collected from the web, spanning vari-
ous object categories, including animals, food, landscapes and others. The video
set contains seven videos from DAVIS dataset [34]. We applied our method
using various target edits, ranging from text prompts that describe the tex-
ture/materials of specific objects, to edits that express complex scene effects
such as smoke, fire, or clouds. Sample examples for the inputs along with our
results can be seen in Fig. 1, Fig. 2, and Fig. 5 for images, and Fig. 6 for videos.
The full set of examples and results are included in the Supplementary Materials
(SM). As can be seen, in all examples, our method successfully generates pho-
torealistic textures that are “painted” over the target objects in a semantically
aware manner. For example, in red velvet edit (first row in Fig. 5), the frosting is
naturally placed on the top. In car-turn example (Fig. 6), the neon lights nicely
follow the car’s framing. In all examples, the edits are accurately localized, even
under partial occlusions, multiple objects (last row and third row of Fig. 5) and
complex scene composition (the dog in Fig. 2). Our method successfully aug-
ments the input scene with complex semi-transparent effects without changing
irrelevant content in the image (see Fig. 1).

4.2 Comparison to Prior Work

To the best of our knowledge, there is no existing method tailored for solving
our task: text-driven semantic, localized editing of existing objects in real-world
images and videos. We illustrate the key differences between our method and
several prominent text-driven image editing methods. We consider those that

Text2LIVE 13

can be applied to a similar setting to ours: editing real-world images that are
not restricted to specific domains. Inpainting methods: Blended-Diffusion [2]
and GLIDE [30], both require user-provided editing mask. CLIPStyler, which
performs image stylization, and Diffusion+CLIP [1], and VQ-GAN+CLIP [7]:
two baselines that combine CLIP with either a pre-trained VQ-GAN or a Dif-
fusion model. In the SM, we also include additional qualitative comparison to
the StyleGAN text-guided editing methods [33,12].

Fig. 7 shows representative results, and the rest are included in the SM. As
can be seen, none of these methods are designed for our task. The inpainting
methods (b-c), even when supplied with tight edit masks, generate new content
in the masked region rather than changing the texture of the existing one. CLIP-
Styler modifies the image in a global artistic manner, rather than performing local
semantic editing (e.g., the background in both examples is entirely changed, re-
gardless of the image content). For the baselines (d-f), Diffusion+CLIP [1] can
often synthesize high-quality images, but with either low-fidelity to the target
text (e), or with low-fidelity to the input image content (see many examples
in SM). VQ-GAN+CLIP [7] fails to maintain fidelity to the input image and
produces non-realistic images (f). Our method automatically locates the cake
region and generates high-quality texture that naturally combines with the orig-
inal content.

4.3 Quantitative evaluation

Comparison to image baselines. We conduct an extensive human perceptual
evaluation on Amazon Mechanical Turk (AMT). We adopt the Two-alternative
Forced Choice (2AFC) protocol suggested in [20,31]. Participants are shown
a reference image and a target editing prompt, along with two alternatives:
our result and another baseline result. We consider from the above baselines
those not requiring user-masks. The participants are asked: “Which image better
shows objects in the reference image edited according to the text”. We perform
the survey using a total of 82 image-text combinations. We collected 12,450
user judgments w.r.t. prominent text-guided image editing methods. Table 1
reports the percentage of votes in our favor. As seen, our method outperforms
all baselines by a large margin, including those using a strong generative prior.

Comparison to video baselines. We quantify the effectiveness of our key
design choices for the video-editing by comparing our video method against:
(i) Atlas Baseline: feeding the discretized 2D Atlas to our single-image method
(Sec. 3.1), and using the same inference pipeline illustrated in Fig. 4 to map the
edited atlas back to frames. (ii) Frames Baseline: treating all video frames as
part of a single internal dataset, used to train our generator; at inference, we
apply the trained generator independently to each frame.

We conduct a human perceptual evaluation in which we provide participants
a target editing prompt and two video alternatives: our result and a baseline.
The participants are asked “Choose the video that has better quality and better

14 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

Image baselines Video baselines

CLIPStyler VQ-GAN+CLIP Diffusion+CLIP Atlas baseline Frames baseline

0.85 ± 0.12 0.86 ± 0.14 0.82 ± 0.11 0.73 ± 0.14 0.74 ± 0.15

Table 1. AMT surveys evaluation (see Sec. 4). We compare to prominent (mask-
free) image baselines (left), and demonstrate the effectiveness of our design choices
in the video framework compared to alternatives (right). We report the percentage of
judgments in our favor (mean, std). Our method outperforms all baselines.

“moon” “a bright full moon”Input Image “chess cake” “birthday cake”Input Image

Fig. 9. Limitations. CLIP often exhibit strong association between text and certain
visual elements such as the shape of objects (e.g., “moon” with crescent shape), or
additional new objects (e.g., “birthday cake” with candles). As our method is designed
to edit existing objects, generating new ones may not lead to a visually pleasing result.
However, often the desired edit can be achieved by using more specific text (left).

represents the text”. We collected 2,400 user judgments over 19 video-text combi-
nations and report the percentage of votes in favor of the complete model in table
1. We first note that the Frames baseline produces temporally inconsistent edits.
As expected, the Atlas baseline produces temporally consistent results. However,
it struggles to generate high-quality textures and often produces blurry results.
These observations support our hypotheses mentioned in Sec. 3.2. We refer the
reader to the SM for visual comparisons.

4.4 Ablation Study

Fig. 8(top) illustrates the effect of our relevancy-based bootstrapping (Sec. 3.1).
As seen, this component allows us to achieve accurate object mattes, which
significantly improves the rough, inaccurate relevancy maps.

We ablate the different loss terms in our objective by qualitatively comparing
our results when training with our full objective (Eq. 2) and with a specific loss
removed. The results are shown in Fig. 8. As can be seen, without Lreg (w/o
sparsity), the output matte does not accurately capture the mango, resulting in a
global color shift around it. Without Lstructure (w/o structure), the model outputs
an image with the desired appearance but fails to preserve the mango shape fully.
Without Lscreen (w/o screen), the segmentation of the object is noisy (color
bleeding from the mango), and the overall quality of the texture is degraded
(see SM for additional illustration). Lastly, we consider a test-time optimization
baseline by not using our internal dataset but rather inputting to Gθ the same
input at each training step. As seen, this baseline results in lower-quality edits.

Text2LIVE 15

4.5 Limitations

We noticed that for some edits, CLIP exhibits a very strong bias towards a
specific solution. For example, as seen in Fig. 9, given an image of a cake, the text
“birthday cake” is strongly associated with candles. Our method is not designed
to significantly deviate from the input image layout and to create new objects,
and generates unrealistic candles. Nevertheless, in many cases the desired edit
can be achieved by using more specific text. For example, the text “moon” guides
the generation towards a crescent. By using the text “a bright full moon” we can
steer the generation towards a full moon (Fig. 9 left). Finally, as acknowledged
by prior works (e.g., [28]), we also noticed that slightly different text prompts
describing similar concepts may lead to slightly different flavors of edits.

On the video side, our method assumes that the pre-trained NLA model
accurately represents the original video. Thus, we are restricted to examples
where NLA works well, as artifacts in the atlas representation can propagate to
our edited video. An exciting avenue of future research may include fine-tuning
the NLA representation jointly with our model.

5 Conclusion

We considered a new problem setting in the context of zero-shot text-guided
editing: semantic, localized editing of existing objects within real-world images
and videos. Addressing this task requires careful control of several aspects of
the editing: the edit localization, the preservation of the original content, and
visual quality. We proposed to generate text-driven edit layers that allow us to
tackle these challenges, without using a pre-trained generator in the loop. We
further demonstrated how to adopt our image framework, with only minimal
changes, to perform consistent text-guided video editing. We believe that the
key principles exhibited in the paper hold promise for leveraging large-scale
multi-modal networks in tandem with an internal learning approach.

6 Acknowledgments

We thank Kfir Aberman, Lior Yariv, Shai Bagon, and Narek Tumanayan for their
insightful comments. We thank Narek Tumanayan for his help with the baselines
comparison. This project received funding from the Israeli Science Foundation
(grant 2303/20).

16 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

References

1. Disco Diffusion, https://colab.research.google.com/github/alembics/
disco-diffusion/blob/main/Disco Diffusion.ipynb

2. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of
natural images. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR) (2022)

3. Bau, D., Andonian, A., Cui, A., Park, Y., Jahanian, A., Oliva, A., Torralba, A.:
Paint by word. arXiv preprint arXiv:2103.10951 (2021)

4. Brinkmann, R.: The art and science of digital compositing: Techniques for visual
effects, animation and motion graphics. Morgan Kaufmann (2008)

5. Caron, M., Touvron, H., Misra, I., Jegou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. ICCV (2021)

6. Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for interpret-
ing bi-modal and encoder-decoder transformers. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

7. Crowson, K.: VQGAN+CLIP, https://colab.research.google.com/github/
justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP(Updated).ipynb

8. Defazio, A., Jelassi, S.: Adaptivity without compromise: a momentumized, adap-
tive, dual averaged gradient method for stochastic optimization. arXiv preprint
arXiv:2101.11075 (2021)

9. Dong, H., Yu, S., Wu, C., Guo, Y.: Semantic image synthesis via adversarial learn-
ing. In: Proceedings of the IEEE International Conference on Computer Vision,
ICCV (2017)

10. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution im-
age synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2021)

11. Frans, K., Soros, L., Witkowski, O.: Clipdraw: Exploring text-to-drawing synthesis
through language-image encoders. arXiv preprint arXiv:2106.14843 (2021)

12. Gal, R., Patashnik, O., Maron, H., Chechik, G., Cohen-Or, D.: Stylegan-nada: Clip-
guided domain adaptation of image generators. arXiv preprint arXiv:2108.00946
(2021)

13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances
in Neural Information Processing Systems (NeurIPS) (2020)

14. Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided
object generation with dream fields. In: Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2022)

15. Jamrǐska, O., Šárka Sochorová, Texler, O., Lukáč, M., Fǐser, J., Lu, J., Shechtman,
E., Sýkora, D.: Stylizing video by example. ACM Transactions on Graphics (2019)

16. Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M.: Neural style transfer: A
review. IEEE transactions on visualization and computer graphics (2019)

17. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and
improving the image quality of stylegan. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, (CVPR) (2020)

18. Kasten, Y., Ofri, D., Wang, O., Dekel, T.: Layered neural atlases for consistent
video editing. ACM Transactions on Graphics (TOG) (2021)

19. Kim, G., Ye, J.C.: Diffusionclip: Text-guided image manipulation using diffusion
models. arXiv preprint arXiv:2110.02711 (2021)

20. Kolkin, N.I., Salavon, J., Shakhnarovich, G.: Style transfer by relaxed optimal
transport and self-similarity. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb
https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP(Updated).ipynb
https://colab.research.google.com/github/justinjohn0306/VQGAN-CLIP/blob/main/VQGAN%2BCLIP(Updated).ipynb

Text2LIVE 17

21. Kwon, G., Ye, J.C.: Clipstyler: Image style transfer with a single text condition.
arXiv preprint arXiv:2112.00374 (2021)

22. Li, B., Qi, X., Lukasiewicz, T., Torr, P.H.: Manigan: Text-guided image manip-
ulation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2020)

23. Lin, S., Fisher, M., Dai, A., Hanrahan, P.: Layerbuilder: Layer decomposition for
interactive image and video color editing. arXiv preprint arXiv:1701.03754 (2017)

24. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision (ECCV) (2014)

25. Liu, X., Gong, C., Wu, L., Zhang, S., Su, H., Liu, Q.: Fusedream: Training-free text-
to-image generation with improved clip+ gan space optimization. arXiv preprint
arXiv:2112.01573 (2021)

26. Lu, E., Cole, F., Dekel, T., Xie, W., Zisserman, A., Salesin, D., Freeman, W.T.,
Rubinstein, M.: Layered neural rendering for retiming people in video. ACM Trans.
Graph. (2020)

27. Lu, E., Cole, F., Dekel, T., Zisserman, A., Freeman, W.T., Rubinstein, M.: Om-
nimatte: Associating objects and their effects in video. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2021)

28. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: Text-driven
neural stylization for meshes. arXiv preprint arXiv:2112.03221 (2021)

29. Nam, S., Kim, Y., Kim, S.J.: Text-adaptive generative adversarial networks: Ma-
nipulating images with natural language. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2018)

30. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

31. Park, T., Zhu, J., Wang, O., Lu, J., Shechtman, E., Efros, A.A., Zhang, R.: Swap-
ping autoencoder for deep image manipulation. In: Advances in Neural Information
Processing Systems (NeurIPS) (2020)

32. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

33. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: Styleclip:
Text-driven manipulation of stylegan imagery. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

34. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A.,
Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv
preprint arXiv:1704.00675 (2017)

35. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transfer-
able visual models from natural language supervision. In: Proceedings of the 38th
International Conference on Machine Learning (ICML) (2021)

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

18 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

36. Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M.,
Sutskever, I.: Zero-shot text-to-image generation. In: Proceedings of the 38th In-
ternational Conference on Machine Learning (ICML) (2021)

37. Rav-Acha, A., Kohli, P., Rother, C., Fitzgibbon, A.W.: Unwrap mosaics: a new
representation for video editing. ACM Trans. Graph. (2008)

38. Reed, S.E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. In: Proceedings of the 33rd International Con-
ference on Machine Learning (ICML) (2016)

39. Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S., Cohen-
Or, D.: Encoding in style: a stylegan encoder for image-to-image translation. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2021)

40. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. Springer (2015)

41. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: Pattern
Recognition - 38th German Conference (GCPR) (2016)

42. Shaham, T.R., Dekel, T., Michaeli, T.: Singan: Learning a generative model from a
single natural image. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (2019)

43. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos.
In: 2007 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR) (2007)

44. Shocher, A., Bagon, S., Isola, P., Irani, M.: Ingan: Capturing and retargeting the
”dna” of a natural image. In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV) (2019)

45. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: 9th Inter-
national Conference on Learning Representations, (ICLR) (2021)

46. Texler, O., Futschik, D., Kučera, M., Jamrǐska, O., Šárka Sochorová, Chai, M.,
Tulyakov, S., Sýkora, D.: Interactive video stylization using few-shot patch-based
training. ACM Transactions on Graphics (2020)

47. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG) (2021)

48. Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T.: Splicing vit features for semantic
appearance transfer. arXiv preprint arXiv:2201.00424 (2022)

49. Xia, W., Zhang, Y., Yang, Y., Xue, J.H., Zhou, B., Yang, M.H.: Gan inversion: A
survey. arXiv preprint arXiv:2101.05278 (2021)

50. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)

51. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion (ICCV) (2017)

52. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

Text2LIVE 19

A Implementation Details

We provide implementation details for our architecture and training regime.

A.1 Generator Network Architecture

We base our generator Gθ network on the U-Net architecture [40], with a 7-layer
encoder and a symmetrical decoder. All layers comprise 3×3 Convolutional layers,
followed by BatchNorm, and LeakyReLU activation. The intermediate channels
dimensions is 128. In each level of the encoder, we add an additional 1×1 Con-
volutional layer and concatenate the output features to the corresponding level
of the decoder. Lastly, we add a 1×1 Convolutional layer followed by Sigmoid

activation to get the final RGB output.

A.2 Internal Dataset (Sec. 3.1)

We apply data augmentations to the source image and target text (Is, T) to cre-
ate multiple internal examples {(Iis, T i)}Ni=1. Specifically, at each training step,
we apply a random set of image augmentations to Is, and augment T using a
pre-defined set of text templates, as follows:

Image augmentations

– Random spatial crops: 0.85 and 0.95 of the image size in our image and video
frameworks respectively.

– Random scaling: aspect ratio preserved scaling, of both spatial dimensions
by a random factor, sampled uniformly from the range [0.8, 1.2].

– Random horizontal-flipping is applied with probability p=0.5.
– Random color jittering: we jitter the global brightness, contrast, saturation

and hue of the image.

Text augmentations and the target text prompt T We compose T with
a random text template, sampled from of a pre-defined list of 14 templates. We
designed our text-templates that does not change the semantics of the prompt,
yet provide variability in the resulting CLIP embedding e.g.:

– ”photo of {}.”
– ”high quality photo of {}.”
– ”a photo of {}.”
– ”the photo of {}.”
– ”image of {}.”
– ”an image of {}.”
– ”high quality image of {}.”
– ”a high quality image of {}.”
– ”the {}.”
– ”a {}.”
– ”{}.”

20 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

– ”{}”
– ”{}!”
– ”{}...”

At each step, one of the above templates is chosen at random and the target
text prompt T is plugged in to it and forms our augmented text. By default,
our framework uses a single text prompt T , but can also support multiple input
text prompts describing the same edit, which effectively serve as additional text
augmentations (e.g., “crochet swan”, and “knitted swan” can both be used to
describe the same edit).

A.3 Training Details

We implement our framework in PyTorch [32] (code will be made available).
As described in Sec. 3, we leverage a pre-trained CLIP model [35] to establish
our losses. We use the ViT-B/32 pretrained model (12 layers, 32x32 patches),
downloaded from the official implementation at GitHub. We optimize our full
objective (Eq. 2, Sec. 3.1), with relative weights: λg = 1, λs = 2 (3 for videos),
λr = 5 · 10−2, (5 · 10−4 for videos) and γ = 2. For bootstrapping, we set the
relative weight to be 10, and for the image framework we anneal it linearly
throughout the training. We use the MADGRAD optimizer [8] with an initial
learning rate of 2.5 ·10−3, weight decay of 0.01 and momentum 0.9. We decay the
learning rate with an exponential learning rate scheduler with gamma = 0.99
(gamma = 0.999 for videos), limiting the learning rate to be no less than 10−5.
Each batch contains (Iis, T

i) (see Sec. 3.1), the augmented source image and
target text respectively. Every 75 iterations, we add {Is, T} to the batch (i.e.,
do not apply augmentations). The output of Gθ is then resized down to 224[px]
maintaining aspect ratio and augmented (e.g., geometrical augmentations) be-
fore extracting CLIP features for establishing the losses. We enable feeding to
CLIP arbitrary resolution images (i.e., non-square images) by interpolating the
position embeddings (to match the size of spatial tokens of a the given image)
using bicubic interpolation, similarly to [5].

Training on an input image of size 512×512 takes ∼ 9 minutes to train on
a single GPU (NVIDIA RTX 6000) for a total of 1000 iterations. Training on
one video layer (foreground/background) of 70 frames with resolution 432× 768
takes ∼60 minutes on a single GPU (NVIDIA RTX 8000) for a total of 3000
iterations.

A.4 Video Framework

We further elaborate on the framework’s details described in Sec. 3.2 of the
paper.

Atlas Pre-processing. Our framework works on a discretized atlas, which we
obtain by rendering the atlas to a resolution of 2000×2000 px. This is done as
in [18], by querying the pre-trained atlas network in uniformly sampled UV lo-
cations. The neural atlas representation is defined within the [-1,1] continuous

https://github.com/openai/CLIP

Text2LIVE 21

space, yet the video content may not occupy the entire space. To focus only
on the used atlas regions, we crop the atlas prior to training, by mapping all
video locations to the atlas and taking their bounding box. Note that for fore-
ground atlas, we map only the foreground pixels in each frame, i.e., pixels for
which the foreground opacity is above 0.95; the foreground/background opacity
is estimated by the pre-trained neural atlas representation.

Training. As discussed in Sec. 3.2 in the paper, our generator is trained on atlas
crops, yet our losses are applied to the resulting edited frames. In each iteration,
we crop the atlas by first sampling a video segment of 3 frames and mapping it
to the atlas. Formally, we sample a random frame t and a random spatial crop
size (W,H) where its top left coordinate is at (x, y). As a result we get a set of
cropped (spatially and temporally) video locations:

V = {p = (x+ j, y + i, t+m) s.t. 0 ≤ j < W, 0 ≤ i < H, m ∈ {−k, 0, k}} (11)

where k = 2 is the offset between frames.
The video locations set V is then mapped to its corresponding UV atlas

locations: SV = M(V), where M is a pre-trained mapping network. We define
the atlas crop IAc as the minimal crop in the atlas space that contains all the
mapped UV locations:

IAc =

{
IA[u, v] s.t. min(SV .u) ≤ u ≤ max(SV .u)

min(SV .v) ≤ v ≤ max(SV .v),

}
(12)

We augment the atlas crop IAc as well as the target text T , as described
in Sec. A.2 herein to generate an internal training dataset. To apply our losses,
we map back the atlas edit layer to the original video segment and process the
edited frames the same way as in the image framework: resizing, applying CLIP
augmentations, and applying the final loss function of Eq. 2 in Sec. 3.1 in the
paper. To enrich the data, we also include one of the sampled frame crops as a
direct input to G and apply the losses directly on the output (as in the image
case). Similarly to the image framework, every 75 iterations we additionally
pass the pair {IA, T}, where IA is the entire atlas (without augmentations, and
without mapping back to frames). For the background atlas, we first downscale
it by three due to memory limitations.

Inference. As described in Sec. 3.2, at inference time, the entire atlas IA is fed
into Gθ results in EA. The edit is mapped and combined with the original frames
using the process that is described in [18](Sec. 3.4, Eq. (15),(16)). Note that our
generator operates on a single atlas. To produce foreground and background
edits, we train two separate generators for each atlas.

	Text2LIVE: Text-Driven Layered Image and Video Editing -0.8cm

